Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ana Carolina Ritter

Ana Carolina Ritter

1Universidade Federal do Rio Grande do Sul, Brazil

Title: Characterization of electrospun nanofibers encapsulating the antifungal agent natamycin

Biography

Biography: Ana Carolina Ritter

Abstract

The application of nanotechnology provides numerous advantages related to food safety and quality. Some nanostructures, such as eletrospun nanofibers, are versatile vehicles to deliver antimicrobials, reducing the drug amount and promoting a more effective action. The aim of this study was to characterize poly--caprolactone (PLC) nanofibers functionalized with natamycin produced by electrospinning. The surface morphology of nanofibers was observed by scanning electron microscopy (SEM) and the thermal properties were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), using a TGA discovery and a DSC Q2000 apparatus, respectively. Fourier transform infrared (FTIR) and near infrared (NIR) spectra were also measured. Four different formulations of nanofiber were tested: PLC dissolved in tetrahydrofuran (THF)/dimethylformamide (DMF) + 0.1% natamycin, PLC dissolved in acetone + 0.1% natamycin, PLC dissolved in dichloromethane/DMF + 0.1% natamycin and PLC with 40 wt% polyethylene glycol and medium-chain triglycerides dissolved in THF/chloroform + 0.1% natamycin. The controls have been developed without natamycin. Preliminary results show that nanofibers present a typical string-like morphology and mean diameter was 221 nm. When natamycin was included in the formulations, an increase in the fiber diameter was observed (292 nm). Infrared spectroscopy studies displayed characteristic peaks for each formulation and similar when compared between control and functionalized nanofibers. The thermogram of PCL nanofibers showed endothermic melting peak at 57oC. Other thermal parameters determined from DSC and TGA thermograms were specific for the 4 formulations and their respective control. Electrospun nanofibers incorporating natamycin are interesting platforms to deliver antifungal substances in food packaging.